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Abstract. In high temperature (high Tc) cuprate superconductors the gap in the electronic density of states
is not fully filled at Tc; it evolves into a partial (pseudo)gap that survives way beyond Tc, challenging the
conventional views. We have investigated the pseudogap phenomenon in the field-temperature (H − T )
diagram of Bi2Sr2CaCu2O8+y over a wide range of hole doping (0.10 ≤ p ≤ 0.225). Using interlayer
tunneling transport in magnetic fields up to 60 T to probe the density-of states (DOS) depletion at low
excitation energies we mapped the pseudogap closing field Hpg. We found that Hpg and the pseudogap
onset temperature T � are related via a Zeeman relation gµBHpg ≈ kBT �, irrespective of whether the
magnetic field is applied along the c-axis or parallel to CuO2 planes. In contrast to large anisotropy of the
superconducting state, the field anisotropy of Hpg is due solely to the g-factor. Our findings indicate that
the pseudogap is of singlet-spin origin, consistent with models based on doped Mott insulator.

PACS. 74.25.Dw Superconductivity phase diagrams – 74.25.Fy Transport properties (electric and thermal
conductivity, thermoelectric effects, etc.) – 74.72.Hs Bi-based cuprates

1 Introduction

The physics of high transition temperature superconduc-
tivity in copper oxides is still one of the outstanding
unsolved problems in condensed matter physics. Super-
conductivity in cuprates arises from doping the charge
carriers into a Mott insulating parent compound, with the
ground state controlled by competing orders [1]. In Mott
insulators, being half-filled (with one hole per Cu), the
antiferromagnetism and insulating behavior are a conse-
quence of strong on-site Coulomb repulsion between the
copper d electrons. And it is generally thought that these
correlated d electrons are essential to the high Tc [2]. A
distinguishing feature of doped Mott insulators is a strong
sensitivity of their ground state to doping, and this is
reflected in the putative phase diagram sketched in Fig-
ure 1. The antiferromagnetic region at low doping (for
both electron and hole-doped materials [3,4]) disappears
with increasing doping, being eventually replaced by the
superconducting ‘dome’ region, bounded by the Tc that
(at least in the hole doped cuprates) is phenomenologi-
cally found to follow a parabolic doping dependence [5]
Tc/T max

c = 1 − 82.6(p − 0.16)2, with p denoting the dop-
ing level. In-between, spin correlations may be felt in a
variety of ways. There may be mesoscopically inhomoge-
neous phases (stripes) [6] and then there is this ubiquitous
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pseudogap phenomenon, which manifests itself as a deple-
tion of the quasiparticle density of states (DOS) below a
characteristic temperature T �, and is particularly promi-
nent in the low doping (underdoped) side of the supercon-
ducting dome. By a way of contrast, on the high doping
(overdoped) side cuprates are deemed conventional, and
as such are expected to display behaviors of conventional
(Fermi-liquid) metals.

However, uncertainties are many. This normal state
pseudogap [7,8] is the most salient and fiercely debated
feature in the phase diagram of cuprate superconductors,
but it’s link to the superconductivity with high Tc is still
unclear. The central issue is whether the pseudogap origi-
nates from spin or charge degrees of freedom and, in par-
ticular, whether it derives from some sort of precursor of
Cooper pairing that acquires the superconducting coher-
ence at Tc. Experimentally, the situation appears deeply
conflicted. On the one hand, photoemission [9] and sur-
face tunnelling spectroscopy [10,11] show the pseudogap
continuously evolving into a superconducting gap below
Tc [12]. The reports of anomalous and large Nernst ef-
fect in the normal state [13] led to claims of vortex-like
excitations surviving up to temperatures close to T �. On
the other hand, intrinsic tunneling measurements revealed
a double gap structure [14,15], indicating the pseudogap
distinct even below Tc. With very different magnetic field
sensitivities [16], the two gap features have been viewed
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Fig. 1. A sketch of the generalized phase diagram of hole-
doped cuprates showing the antiferromagnetic (AFM) insula-
tor regime at low doping, the superconducting (SC) ‘dome’,
and the vast pseudogap region (PG) below the characteristic
temperature T �. How and where the T � line reaches the zero
value is still unknown.

by some as being unrelated [17]. This view is strongly ar-
gued in the, so called, ‘competitor’ scenarios [18,19] which
require the pseudogap closed in a phase transition at the
quantum critical point, turning the cuprate pseudogapless
on the overdoped side of the dome, but not far from the
optimal doping p = 0.16.

Recently we have shown that in magnetic fields along
the c-axis, the field Hpg that closes the pseudogap ∆pg

relates to T � via a simple Zeeman relation [20], suggest-
ing that ∆pg is controlled by the spin- rather than or-
bital degrees of freedom. However, several ‘precursor su-
perconductivity’ scenarios, for example, those based on
BCS-Bose Einstein crossover [21] or on intermediate cou-
pling [22] models, argue that Zeeman scaling is compatible
with the superconducting origin of the pseudogap.

Here we will discuss our experiments probing the pseu-
dogap state at ultrahigh magnetic fields using interlayer
(c-axis) tunnelling transport as a probe. Our task here will
be to draw a map of the H-T -p diagram of the pseudogap
state, to test the field anisotropy of Hpg and compare it
with the anisotropy of the superconducting state, to access
the role of fluctuations in the high-field/low-temperature
regime, and to search for the presence of a quantum criti-
cal point (QCP). We find that the pseudogap closing field
obeys a Zeeman scaling relation gµBHpg ≈ kBT � regard-
less of the field orientation. And while in the supercon-
ducting state anisotropy is large, Hpg(T ) displays only a
small anisotropy of the the (spectroscopic splitting) Landé
g-factor of the Cu2+ ions. Given the scales for Hpg and T �,
the Zeeman splitting for the spin degrees of freedom ap-
pears not in correspondence with pair-breaking via a con-
ventional paramagnetic (Pauli) effect [23]. The observed
Zeeman relation and the absence of orbital frustration
naturally points to a singlet spin-correlation gap closed
with a triplet spin excitation at Hpg. The pseudogap is
clearly present up to a very high doping level and no ev-

idence for the quantum critical point (QCP) is found up
to p = 0.225.

2 Interlayer tunnelling resistivity at high
magnetic fields as a probe of the pseudogap

Among various techniques that quantify DOS, the mea-
surements of the interlayer tunnelling resistivity ρc are
uniquely suited for exploring the highest magnetic field
range available mostly in a pulsed mode. In materials,
such as Bi2Sr2CaCu2O8+y (Bi-2212), that are strongly
anisotropic and where interlayer coupling between CuO2

layers is sufficiently weak, the c-axis transport directly
measures Cooper pair or quasiparticle tunneling in both
normal and superconducting states [24], providing bulk in-
formation about the quasiparticle DOS at the Fermi en-
ergy. Indeed, in the case of Bi-2212, ρc(T ) fully corre-
sponds to the measured differential tunnelling resistivity
dV/dI(T ) at zero bias measured in the mesoscopic mesa-
shaped structures carved out of single crystals, comprising
several CuO2 planes separated by ∼ 15 Å thin intrinsic
tunnelling barriers [14]. ρc is particularly sensitive to the
onset of the pseudogap formation, since the DOS depletion
is largest at the Fermi energy. Moreover, ρc is informed by
the vicinity of the (π, 0) points (the so called ‘hot spots’)
on the anisotropic Fermi surface [25,26], where the pseu-
dogap first opens up [9]. (This is in contrast to the in-
plane resistivity ρab mainly determined by carriers with
momenta parallel to the (π, π) directions [25].)

One important consequence of the pseudogap is
the temperature dependence of (anisotropic) normal
state resistivity. The in-plane resistivity ρab is metallic
(dρab(T )/dT > 0) and T -linear at high temperatures
(above T �) but is believed to decrease on cooling faster
near the opening of the pseudogap [27]. However, ρc turns
from metallic to semiconductinglike (dρc(T )/dT < 0) at
T � above onset of the deviation from the T -linear behavior
in ρab [28,29]. Tunnelling spectroscopy data [30] indicate
that the ‘pseudogap temperature’ – defined as the tem-
perature at which the conductance dI/dV develops a dip
at zero-bias – corresponds to T � from the c-axis transport.
Moreover, the pseudogap phase boundaries obtained from
the ρc and from the static susceptibility measurements
appear to coincide [28].

To elucidate the field and temperature dependence of
the pseudogap over a wide doping range, we carefully ad-
justed hole concentration p spanning both underdoped
and overdoped regimes in Bi-2212 crystals grown by the
floating-zone method. The doping level was controlled by
annealing in O2 or N2 at the appropriate pressures. ρc(H)
was measured using a 33 T dc magnet and a 60 T long
(2 s and 60 ms) pulse systems at the National High Mag-
netic Field Laboratory (NHMFL). In the pulse magnets
we used a lock-in technique at 100 kHz. Negligible eddy-
current heating was verified by the consistency of the data
taken with successive pulses to different target fields.



L. Krusin-Elbaum and T. Shibauchi: High-field interlayer tunnelling transport in layered cuprates 447

2.1 Temperature dependence of ρc

The temperature dependence of the c-axis resistivity ρc

for a Bi-2212 crystal (p � 0.2) with Tc = 78 K is shown in
Figure 2a. On cooling, at a temperature above Tc the zero-
field ρc(T ) develops an upward deviation from the metal-
lic dependence at the pseudogap temperature T � [28,29].
At this temperature the magnetoresistance (MR) changes
sign – the negative MR is due to the field suppression of
the pseudogap, i.e. a recovery of the depleted DOS by the
magnetic field. The semiconductinglike upturn at H = 0
is not so apparent if the doping level is sufficiently high.
For example, an overdoped (OD) crystal in Figure 3 with
Tc = 60 K (p = 0.225) is so overdoped that the zero-field
ρc(T ) is metallic nearly all the way down to Tc. However,
even a moderate magnetic field (∼ 10 T) along the c di-
rection exposes the upturn in ρc(T ) before it plunges to
zero in the dissipationless state below Tc. Further increases
in field affects the pseudogap itself, namely the upturn is
suppressed and the metallic regime is extended to lower
temperatures. In overdoped samples, T � can be very close
to Tc, or may be below Tc, see reference [14].

In the OD crystal with Tc = 67 K (p = 0.22) a mag-
netic field of ∼ 60 T downshifts the semiconducting up-
turn in ρc(T ) and the associated T � by about 20 K [20],
see Figure 2b. In other words, at this doping level, the
60 T field at ∼ 100 K closes the pseudogap. To track the
pseudogap closing field at lower temperatures and higher
fields, we consider the excess resistivity ∆ρc due to the
pseudogap. ∆ρc is obtained by subtracting the T -linear
contribution [20]. The T -linear behavior of ρc is observed
over a large temperature range above T � and there is no
indication of a different temperature dependence when the
‘true’ ungapped normal state is restored.

2.2 Field dependence of ρc; Josephson
and quasiparticle c-axis tunnelling in a layered cuprate

In the superconducting state, ρc(H) becomes finite above
the irreversibility field Hirr (≡ zero resistivity field H0ρ in
Fig. 4). This signals the entry into a vortex liquid state.
A characteristic peak is observed at a higher field Hsc.
This peak arises from a competition between two parallel
tunnelling conduction channels [24]: σJ of Cooper pairs
(Josephson tunnelling that decreases with increasing field)
and σq of quasiparticles (dominating at high fields). The
entire c-axis conductivity σc can be written as:

σc = σJ0exp
[
U(H)

T

]
︸ ︷︷ ︸

σJ

+ σq0

(
1 +

H

H∆

)
︸ ︷︷ ︸

σq

, (1)

with σJ controlled by the thermally activated diffusive
drift of pancake vortices hopping over the energy barri-
ers U(H) in the CuO2 planes [31]. Here, σJ0 and σq0 are
the T = 0 values of Josephson and (nodal) quasiparticle
tunnelling conductivities, and H∆ = Φ0∆

2/�
2v2

F , where
∆ is the gap in the quasiparticle spectrum [24]. Note that
in the BCS theory H∆ corresponds to the conventional
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Fig. 2. Determination of the pseudogap temperature T �

and the pseudogap closing field Hpg from ρc(T, H) in over-
doped Bi-2212. (a) ρc(T ) deviates from metallic T -linear de-
pendence at the same temperature where negative MR =
[ρc(H)− ρc(0)]/ρc(0) disappears, identified as pseudogap tem-
perature T �. (b) For Tc = 67 K, T � is shifted by ∼ 20 K
by a 58.5 T field. Inset: The excess quasiparticle resistivity
∆ρc(H) (above Hsc) is fitted to a power-law field dependence
[∆ρc(H) − ∆ρc(0)] ∝ Hα.

Fig. 3. c-axis resistivity vs. temperature in overdoped Bi-2212
(with the hole doping level p = 0.225) up to 55 T ‖c. The
normal state resistivity ρn

c (T ) is shown as dashed line. Here
the pseudogap temperature T � ∼ 100 K.
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Fig. 4. (a) ρc(H) is marked by three characteristic fields: (zero-
resistivity) H0ρ ≡ Hirr, Hsc, and Hpg. The ungapped state
value ρn

c (dashed line) is reached at the pseudogap closing field
Hpg. The data are for an overdoped crystal with Tc = 60 K.
Inset: ρc is the inverse of the interlayer tunneling conductivity
σc near Fermi energy E = EF . (b) The peak field at Hsc, and
the irreversibility field Hirr both strongly upshift on cooling.
The data shown here are for H ‖ c.

Hc2 ∼ Φ0/2πξ2. The remarkable H-linear behavior of σq

at high fields is directly seen from our measurements of
I−V s in the Bi-2212 mesas, where we measured quasipar-
ticle conductivity up to 33 T (see Fig. 5) after suppressing
the Josephson contribution with current.

Taking the derivative of equation (1) with respect to
H and recalling that U(H) = U0lnH0

H for a 2D vortex lat-
tice [32], we obtain the expression for the field Hsc where
the maximum in ρc (minimum in σc) will occur,

Hsc(T ) ∼= H0

[
σq0

σJ0

T

U0

H0

H∆

]− T
U0

. (2)

Indeed, this high field Hsc(T → 0) can hardly be dis-
tinguished from a T -exponential consistently observed in

Fig. 5. Normalized quasiparticle c-axis conductivity as a func-
tion of H ‖ c obtained from the I − V curves (top inset) mea-
sured on the mesa shaped crystals of Bi-2212 (sketched).

the entire doping range. At Hsc, the quasiparticle and the
Josephson tunnelling currents are comparable. Above the
peak at Hsc(T ), the magnetoresistance is negative and fol-
lows a power-law (see legend of Fig. 2) until the pseudo-
gap is quenched at Hpg when ρc(H) reaches the ungapped
normal state resistivity ρn

c (Figs. 2–5).

3 The role of spins in the formation
of the pseudogap

3.1 Closing the pseudogap by Zeeman splitting

At the closing of the pseudogap ∆ρc → 0 and we deter-
mine the pseudogap closing field Hpg(T ) beyond 60 T by
a fit to the power-law field dependence [24] of ∆ρc(H)
at different temperatures. This illustrated in the inset
of Figure 2b. Figure 6 shows the doping dependence of
the pseudogap closing field Hpg(p) and T �. Hpg and T �

obtained independently in the same crystals in the OD
regime, scale through a strightforward Zeeman energy re-
lation gµBHpg ≈ kBT � with g = 2.0. Here µB is the Bohr
magneton, and kB is the Boltzmann constant. This im-
plies that magnetic field couples to the pseudogap by the
Zeeman energy of the spin degrees of freedom. It all indi-
cates a predominant role of spins over the orbital effects
in the formation of the pseudogap. Our evaluation of Hpg

gives a consistent and physically sensible picture, since at
low temperatures Hpg(T ) is flat in underdoped samples as
well, and Hpg(p) is a smooth continuation from the over-
doped side. We surmise that the Zeeman scaling found in
the OD samples holds in the entire doping range of this
study.

Notably, the doping dependencies of the peak field
Hsc(p) and Hpg(p) are drastically different. At Hsc we
have still a small but finite Josephson current which is
a measure of the superconducting coherence. This natu-
rally accounts for a parabolic doping dependence of Hsc(p)
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Fig. 6. Doping dependence of low-temperature Hpg (squares)
and Hsc (diamonds) in Bi-2212 together with T � (open trian-
gles) and Tc (circles). The hole concentration p was obtained
from the empirical formula Tc/T max

c = 1− 82.6(p− 0.16)2 [17]
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c = 92 K. The shaded band covers T �(p) in cuprates
determined by several techniques (taken from Ref. [7]). Inset:
For H‖c the pseudogap closing field Hpg and T � follow a sim-

ple Zeeman scale gµBH
‖c
pg ≈ kBT � with g = 2.0 down to the

hole doping level p = 0.225.

similar to that of Tc(p) where the superconducting coher-
ence is established at zero field.

3.2 Anisotropy of the pseudogap state

Conventionally, the upper critical field Hc2
∼= Φ0/2πξ2 is

determined not directly by the gap, but by the coherence
length ξ (the size of the Copper pair). The orbital mo-
tion of the Cooper pairs with increasing field eventually
leads to diamagnetic pair breaking, restoring the normal
state. Ginzburg-Landau description of anisotropic 3D su-
perconductor gives Hab

c2 = Φ0/2πξabξc (for the field in the
ab-plane) and Hc

c2 = Φ0/2πξ2
ab (for the field along the c-

axis), where Φ0 is the flux quantum [33]. In cuprates, the
field anisotropy γ = Hab

c2 /Hc
c2 = ξab/ξc is large [34], since

the coherence length ξc along the c-axis (∼ 2 Å) is much
shorter than the in-plane ξab (∼ 20 Å). In the ‘precursor’
view, one would similarly expect an orbital frustration of
preformed pairs at the pseudogap closing field.

Figure 7 shows the peak at Hsc upshifting with de-
creasing temperature at a rate much faster for H‖ab than
for H‖c. This is understood because Hsc is a ‘practical’
measure – a reliable lower bound [24] on Hc2. The tem-
perature dependence of Hsc in Figure 8a shows that not
only the initial slope for the two field alignments is very
different, namely, dHab

sc /dT |Tc= −3 T/K is much larger
than dHc

sc/dT |Tc= −0.27 T/K, but also the overall cur-
vature changes from concave to convex when the field
is rotated from the out- to in-plane. This is reflected in
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Fig. 7. Excess c-axis resistivity ∆ρc = ρc − ρn
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subtracting the ungapped normal state resistivity ρn
c (T )] for

(a) H‖c and (b) H‖ab. All curves are labelled by temperatures.
∆ρc above the resistivity maximum at Hsc follows a power-
law. At each temperature the pseudogap is extinguished at a
closing field Hpg(T ) when ∆ρc(H) → 0. Top inset: The high-
field collapse on the same scaling curve of ∆ρc(H) plotted vs
H/Hpg for many temperatures enables us to independently
track Hpg(T ) for H‖c and ‖ab. Above 0.5Hpg the Josephson
current contribution is negligible. Bottom inset illustrates a
power-law fit at T = 50 K. Bars indicate the errors associated
with the fits.

the strong temperature dependence of the anisotropy ra-
tio γsc = Hab

sc /Hc
sc, which is ∼ 12 close to 55 K but de-

creases by a factor of 3 near 0.5Tc. Indeed, in the quasi-2D
regime at high fields (when ξc(T ) becomes smaller than
the interlayer distance d ∼ 15 Å), the temperature de-
pendent Hc2 anisotropy below Tc derived for weakly cou-
pled superconducting layers stacked in the c-direction is
γ ∝ 1/

√
1 − T/Tc [35]. This T -dependence is well followed

by γsc (Fig. 8b), with the T → 0 limit in good correspon-
dence with the (∼ 3−4) anisotropy reduction with doping.
The irreversibility anisotropy (also T -dependent) is even
larger; Hab

irr/Hc
irr ≈ 20 − 30 near 30 K, as shown in Fig-

ures 8c and 8d.
To quantify the anisotropy of the pseudogapped

state [36] we used the identical procedure for H‖c and
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H‖ab to evaluate the excess quasiparticle resistivity
∆ρc. Figure 7 shows that for the in-plane applied field
ρc(H) has to be extrapolated somewhat further to reach
the ungapped normal state value than for H‖c (‘weak’
anisotropy in the normal state up to 14 T was reported
in [37,38]). The values of Hpg(T ) can be independently
tracked from the high-field scaling behavior of ∆ρc for
H → Hpg shown in Figure 7 (top inset).

The obtained pseudogap closing field Hpg(T ) for the
two orthogonal field orientations is plotted in the H − T
diagram in Figure 9. In contrast to Hsc and Hirr, Hpg(T )
is T -independent below ∼ 0.8T �. The ‘flatness’ of Hpg(T )
below roughly 0.8T � has been consistently observed for
H‖c at all doping levels (p = 0.1 − 0.225). Here we see
that this flatness is a unique thumbprint of the pseudogap
closing field irrespective of the field direction. The conse-
quence of this is twofold. One, it leaves no doubt that the
anisotropy γpg = H

‖ab
pg /H

‖c
pg is temperature-independent

from ∼ 80 K down to at least 0.4T �. Moreover, as the
inset shows, γpg ≈ 1.35 ± 0.1 all the way up to ∼ T �.
Two, since it robustly projects to the zero-temperature
values of Hpg(T ) (≈ 71 T for H‖c and ≈ 96 T for H‖ab),
this directly translates into a Zeeman scaling relation
g‖cµBH

‖c
pg(T = 0) = g‖abµBH

‖ab
pg (T = 0) ≈ kBT �(H =

0), with the g-factor anisotropy g‖c/g‖ab ≡ γpg, indicat-
ing the ∆pg closing to be a ‘massless’ process. Indeed,
independent measurements [28] of uniform spin suscepti-
bilities χab(H‖ab) and χc(H‖c) in Bi-2212 give a constant
χc/χab = (g‖c/g‖ab)2 ≈ 1.6, in complete correspondence
with the pseudogap anisotropy γpg.

4 Huge quantum fluctuations at high
magnetic fields

One important question raised about the strongly OD
regime concerns the role of fluctuations. There the differ-
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Fig. 9. The pseudogap closing field Hpg(T ) for H ‖ c (left hand
side) and H ‖ ab (right hand side) in Bi-2212 with p = 0.225.
The error bars indicate the uncertainties in the power-law fits.

The ratio H
‖ab
pg (T )/H

‖c
pg(T ) ≈ 1.35 is temperature indepen-

dent (inset) and corresponds to the anisotropy of the g-factor.
This points to the separate spin- and charge-correlation chan-
nels with the spin-gap closed at Hpg by a triplet excitation, as
sketched in the outset.

ence between the T � and Tc may not be well discernible,
because thermal (classical) fluctuations are very large [33].
One way to address this issue is to consider quantum fluc-
tuations at ultrahigh fields. Evaluating the significance
of quantum fluctuations is a harder task, and estimat-
ing (very high) Hc2 in the cuprates has been a subject of
much controversy [33], not surprisingly aggravated by the
pseudogap below T �. We have found [39] that in strongly
overdoped Bi-2212, as T → 0 the magnetic field that closes
the pseudogap and the upper critical field Hc2 coincide,
uniquely defining the upper limit on the vortex state. By
mapping the upper and lower bounds on the molten vor-
tex state, we have found the gapped quantum fluctuation
regime stretches from ∼ 30 to 70 T. This exceeds by far the
conventional estimates, pointing to the anomalous gapped
nature of the strongly overdoped regime.

The observed ease of vortex displacements by zero-
point vibrations naturally points to a modified structure
of the vortex core. The pseudogapped core has been ex-
perimentally demonstrated by scanning tunnelling spec-
troscopy [10]. And from phenomenological considerations,
the observed reduction in the effective viscosity η [40] (im-
plying a higher vortex velocity) points to a reduced num-
ber of carriers available for pushing the current through
the core, consistent with the pseudogaped cores.
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5 What about a quantum critical point?

The T − p−H diagram for a strongly overdoped Bi-2212
with p = 0.225 is compiled in Figure 10. Here we focus
on the low temperature regime. In a view where the de-
duced QCP is near p = 0.19 [17] the difference between Tc

and T � (double-ended arrow) beyond the QCP may come
from thermal fluctuations. However, the unconventionally
large dissipative gapped state we observe at high fields as
T → 0 may suggest the pseudogap in the quantum limit
far on the overdoped side. This picture is consistent with
the upturn in the ρc(T ) recovered in a moderate mag-
netic field, and the smooth continuity of Hpg(p) from the
UD side [20] with its ‘flat’ low-temperature behavior at
all doping levels. Therefore, we conclude that there is no
experimental support from the ρc measurements for the
quantum critical point up to p = 0.225.

6 Separated spin and charge degrees
of freedom

Let us now consider the field scales corresponding to the
pseudogap energy T �. Recently, Wang et al. [41] measured
thermal (in-plane) Nernst transport in Bi-2212 and from
that deduced values of an orbital limiting ‘upper criti-
cal field’ HN

c2 , past which the charge pairing amplitude
should vanish. HN

c2 was found to decrease steeply with
increased doping, implying that the Cooper pairing po-
tential and the superfluid density follow opposite trends
versus charge doping. This led Wang et al. to an interpre-
tation [41] of the role of phase fluctuations in the low dop-
ing region. Central to understanding this observation is
how the Nernst-derived HN

c2 relates to the gap T � observed
by angle-resolved photoemission (ARPES) [9,26,42], as
well as by the intrinsic tunnelling [14] spectroscopies: pair-
ing correlations are quenched through localization in a
magnetic field H once the magnetic length a0 drops be-
low the pair correlation length ξ� = �vF /αT �. Here, vF

is the Fermi velocity and α is a numerical of order unity.
Indeed, the Nernst-derived magnetic field appears to well
match this condition [41] and hence qualifies as an orbital
limiting (or critical) magnetic field HN

c2 ; as such it scales
quadratically in T ∗, µBHN

c2 ∼ T ∗2/mv2
F .

Remarkably, a ‘critical’ magnetic field Hpg derived
from our c-axis interlayer tunnelling transport measure-
ments is much higher than HN

c2 . Given the equivalence
of the limiting fields Hpg and HN

c2 to the same pseudogap
energy scale T � but via different routes, ‘orbital’ for HN

c2

and ‘Zeeman’ for Hpg, we can simply derive how the two
fields relate (as a function of doping p),

HN
c2(p) = H�

c2(p) ≡ α2 µBHpg(p)
mv2

F

Hpg(p). (3)

Note that equation (3) rests only on pairing (and the un-
certainty principle) combined with the definitions of the
Zeeman energy and the magnetic length.

With the Fermi velocity vF insensitive to dop-
ing [42], equation (3) predicts a simple quadratic relation

Fig. 10. Temperature-field-doping diagram of Bi-2212 high-
lighting the overdoped region up to p = 0.225 near Tc and
near T = 0. The unconventionally large dissipative gapped
state (DGS) in the T = 0 limit is consistent with the pseudo-
gapped vortex cores in the overdoped regime.

HN
c2(p) ∝ H2

pg(p). Comparing HN
c2(T ∼= 0) and H�

c2(0) by
using most recently measured values for the Fermi veloc-
ity [43] vF � 2 eVÅ and choosing α ≈ 0.6, we obtain
a proper collapse of the data in the low doping (under-
doped) regime p < 0.16 [44]. Close to optimal doping, the
scaled and the measured orbital fields part their ways: H�

c2

enters the superconducting ‘dome’ while the HN
c2 follows

its edge, pointing to a remarkable distinction between the
low- and the high-doping sides [42].

Having the two critical fields HN
c2 and Hpg related to a

single energy scale T ∗, the question arises how one could
dispose of the same correlation energy twice: via the or-
bital route at HN

c2 and then again via the Zeeman effect at
Hpg � HN

c2 . This ‘double jeopardy’ is naturally resolved
by a strongly anisotropic (truncated) Fermi surface [42],
hosting separated charge and spin degrees of freedom. A
generic starting point is the quantum spin-singlet liquid
forming at the energy scale T � — this spin-liquid ground-
state is void of any long range order and competes with
the antiferromagnet [45–47]. Upon doping, the spin-liquid
becomes energetically favorable, charge and spin degrees
of freedom separate and holes are expected to condense
on the spin-liquid background, turning phase coherent at
a lower energy Tc.

7 Concluding remarks

Hence, we conclude that at the edge of the pseudogap,
a Zeeman scaling relation holds for both H‖ab and H‖c.
This implies that the pseudogap closing field Hpg arises
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from the correlations in the spin-channel that persist
far into the strongly overdoped regime. The considera-
tions above naturally lead to two field scales: the spin
degrees are connected to the Zeeman field Hpg and the
charge degrees are connected to the orbital field HN

c2 ob-
tained through the Nernst transport. The in-plane Nernst
transport reflects the dissipation due to nodal quasiparti-
cles [25] in the vortex cores, with momenta nearly parallel
to (π, π). Consequently, HN

c2 inhibits hole-pairing at the
Fermi surface diagonals, but does not destroy the spin-
singlet pairs around the Fermi surface corners – these spin-
singlets are unpaired at the much higher Zeeman field Hpg.
The breakup of the spin-singlets leaves its trace in the
c-axis tunnelling experiment, since during the tunnelling
process spin and charge degrees recombine into conven-
tional carriers. Therefore, the identification of two limiting
magnetic fields HN

c2 and Hpg deriving from the same pseu-
dogap energy scale T � via an orbital and a Zeeman rela-
tion, respectively, finds a natural interpretation in terms
of a reconstructed Fermi surface with separated charge
and spin degrees of freedom, arising in the scenarios for
high-Tc based on a doped Mott insulator [45–47].
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